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Random walks for on-lattice DLA simulations 

Richard Friedbergt and Olivier Martin$ 
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green 
Street, Urbana, IL 61801, USA 

Received 31 March 1987 

Abstract. Two efficient ways to accelerate on-lattice DLA simulations without introducing 
any bias are presented. The first requires one-dimensional tables but little arithmetic; the 
second needs no tables but necessitates the evaluation of a few elementary functions. 

1. Introduction 

When performing a Monte Carlo or simulating a stochastic process, it is almost always 
necessary to have an unbiased estimator for a Green function, and in addition, each 
realisation of the estimator should be positive, otherwise one must introduce negative 
weights and reliability is usually lost. Here, we consider the case of on-lattice DLA 

simulations [ l ,  21. In the past two years, the cluster sizes achieved have become very 
large and a cross-over from a fractal to non-fractal form has been seen [3,4]. It is 
believed that the underlying lattice anisotropy is reponsible for this behaviour. 
However, the simulations have been performed by using a mixture of on- and off -lattice 
methods, so that one does not really know quantitatively the effect of the lattice grid. 
This reason for using this mixture of methods is a practical one: a single stepping 
random walk is very slow, and the walker takes a long time before it either sticks to 
the cluster or drifts far enough away so that it can be thrown away. To accelerate this 
random walk, one needs to increase the effective step size at each iteration. One 
method used is to keep the steps on axis, but simply increase their size, depending on 
how far one is from the cluster. This probably enhances significantly the effect of the 
anisotropy of the lattice, and thus should be avoided. Ball and Brady [3] introduced 
an algorithm which increases the step size by using the distribution of the first crossings 
of a square centred on the current location of the diffusing particle. Ball and Brady 
used the continuum Green function for this purpose and thus introduced a small bias. 
In this paper we show how one can use instead the lattice Green function. This 
distribution or Green function is given in the next section. Its tabulation for a number 
of square sizes provides a fast and unbiased DLA algorithm. In the subsequent section, 
we show how the use of tables can be avoided by using a decomposition of the relevant 
Green function into analytically simple pieces which are all positive. 

t Visiting from Barnard College and Columbia University, New York, NY, USA, 
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2. First-passage Green function for a square 

Consider a random walker (particle) on a two-dimensional lattice. At each time step, 
it hops randomly to a nearest-neighbour site. If the new position is adjacent to the 
cluster, the particle sticks, joining the cluster, and a new walk is initiated infinitely far 
away from the cluster, Of course, in practice, this means starting the new walker at a 
distance from the cluster much larger than its diameter and this introduces a small 
bias. Reducing the bias is very costly in CPU time if one is single stepping the particle, 
so the step size should be increased in some way. Since the problem on the square 
lattice is rather regular, it is possible in fact to start the random walker on a square 
surrounding the cluster rather than infinitely far away without introducing any bias. 
This is done by finding the distribution on the square of the first passages of a particle 
coming in from infinity, as shown in [ 5 ] .  The square can be small enough so that it 
just encloses the cluster. This removes the inefficiency of having the random walker 
diffuse from infinity, and it can be used whenever the particle is far enough away from 
the cluster. However, nearer to the cluster this method cannot be used and one must 
find another way to make large steps. This is particularly important if the cluster is 
fractal and has holes on all length scales. 

Given a point and a surrounding path on the lattice, we wish to find the distribution 
of the location where the particle encounters the path for the first time. We require 
that the cluster lie entirely outside the closed path. This distribution is determined by 
the solution to the discrete Laplace equation with a source term at the point of origin 
and zero boundary conditions on the enclosing path 

The distribution of interest is then given by the 'current' flowing into the points on 
the path [ 6 , 7 ] .  This is particularly simple for a square centred on the point of origin: 
the current is given by the gradient which is just the value of the adjacent site inside 
the square because the boundary conditions are G = 0. If we consider the new stochastic 
process where at each step we select an appropriate square size around the current 
particle location and choose a site on the edge with the above probability distribution, 
then one obtains the proper probability for sticking to the surface of the cluster at 
each site, i.e. the algorithm is unbiased. Since the step size can grow with the distance 
to the sticking centres, the algorithm is very efficient. 

In [3], equation (1) was solved in the continuum. We now calculate the Green 
function G ( x , y )  for the lattice problem. First we specify a square of width 2s, thus 
containing 2s + 1 points on each edge with the origin as indicated in figure 1. The 
solution of (1) with zero boundary conditions is of the form 

m = 2 s - l  

G ( x , y ) =  c, sin sinh[k;,(s-lyl)] 
m=O 

where 

Imposing the condition of (1) at y = 0 leads to 

C2,, = o  c2,,+, = ( -1)"[2s cosh(c2,,+,s) sinh c2n+lJ-'. 
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Figure 1. Origin of axes for the square  centred at the current site 

In view of the symmetry, we need only consider one edge of the square, and the 
probability distribution of the first-passage walks is G( 1, y ) ,  where again by symmetry 
we can restrict y to be in [0, s - 11. Calculating G(1, y )  for these values of y requires 
s2 operations, and the simplest thing to do is to tabulate these values for several values 
of s. The algorithm now proceeds by picking at random one of the eight half-sides of 
the square and then choosing y being careful not to overcount y = 0. 

Once G( 1, y )  is obtained, one can create a table of values of the cumulant distribu- 
tion and use this to generate values of y with the right probability. In  practice, one 
may want to have tables for s = 2k  so that the effective step size can be large without 
excessive memory requirements. The choosing of y can be accelerated by using in 
addition an approximate table following standard practice. Another possibility is to 
use an accept-reject procedure. A simple trial distribution for y is obtained by 
generating a point uniformly in a quarter circle, O <  r < 1, 0 < 6 < n / 2 ,  and taking 
y = (s --+)A cos 6 to the nearest integer. The trial probability T ( y )  is easily calculated. 
One is to accept y with a probability proportional to G ( y ) /  T ( y ) ,  the proportionality 
constant being most conveniently taken to force y = 0 to be always accepted. We have 
coded this algorithm and find that the average acceptance is very insensitive to s, and 
is close to 75%.  

3. Positive decomposition of the Green function 

The use of tables for the cumulant of G(y)  in the DLA problem is computationally 
efficient because the entries are calculated once and for all at the beginning of the run 
and are used a large number of times in growing large clusters. In addition, since y 
is the only argument of the tables, the storage space is not excessive in general. 
However, there are other problems where it is not as practical to use this approach, 
either because the tables are not used as frequently, or one needs many more values 
of s. Since it is generally not efficient to tabulate G as a function of too many variables, 
one should find another method which is more practical. In addition, it is not worth 
tabulating G for very large values of s as the space required is large and such values 
are not used very often. Our suggestion is to obtain a representation of G in terms of 
a sum of positive analytically simple terms. One then samples these terms using an 
accept-reject method so that no tables are needed. We illustrate this method here in 
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the context of DLA. The Green function of ( 2 )  can be written as 
v - 1  " 

where 
1 7 r  n'7r 

2s 2 s  S 
G , , . ( y )  =-sin-(--l)" cos-h,(y) 

with 

If G,,,.(y) were always positive, we could realise G stochastically by selecting n, n' 
with weight X,G,,,.(y), and then selecting y with weight G,,, ,(y).  Since there are 
negative weights, we try to eliminate them by decomposing G into positive linear 
combinations of the G,,,,. 

In figure 2 ,  each (n ,  n') is represented by a dot. Our idea is to group the dots into 
cells each of positive weight. Since negative values of n' are not represented separately, 
each dot with n'>O must receive total weight 2G,,,, and those with n ' = O  only G,,,,,. 
Seeing that h, (y )  is a decreasing function of n, one's first thought is to pair two 
successive values of n for the same n' ,  so that the weight of the combination is 
proportional to 

If all dots are included, however, the prefactor will sometimes be negative. A second 
idea is to group four dots in an oblique parallelogram with weight 

f n ( ~ ) =  h n ( y ) - h n + I ( Y ) .  (8) 

S 

2j'rr 
& , ( y )  cos--f2,,(y) COS 2s 2s  S 

but this fails to count n ' >  0 twice as often as n'= 0. 

(9) 

n 
Figure 2. Decomposition of the Green function into cells G,,,,. on the n, n' grid. 
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We are thus led to the scheme shown in figure 2, in which each cell contains six 
dots with the middle pair counted twice. This cell is the sum of the one described in 
(9) with an overlapping one having 2 j + 2 j +  1,  2jr+2j'+ 1 .  Its weight is thus 

(10) 

If we sum over all cells for which 2 j ' s  2j s s - 3, each dot in figure 2 is counted the 
right number of times except some at the extreme right. Assuming that s is odd, we 
find that all dots with n = s - 1,  n ' =  0 ,2 ,  . . . , s - 1 (circled dots) are undercounted by 
1,  and non-existent dots with n = s, n' = 2,4,  . . . , s - 1 (empty circles) are overcounted 
by 1 .  The total error in G ( y )  is therefore 

- - 
since k2s+l = k2s-1 by (3 ) .  

decomposition, we sum analytically F,,,.(y) over j' for fixed j. We have (for odd s)  
We have found empirically that (10) is not always positive, so to obtain a positive 

where 

+sin E )  (2j+ 1 ) ~  
= 1 8s (cos %)-' [ h j ( y ) (  sin S S 

-2f2,+1(y) sin S + f 2 , + 4  sin S S 
- sin E ) ] .  (2j + 2)77 (2j +3)77 

The equivalence of (12) and (13 )  with ( 7 )  to (2) with (4) follows immediately by 
combining terms in (12) having the same subscript for h. The double decomposition 
( 5 )  was needed only for motivation. We have checked numerically that (13 )  is positive 
for s < 400, and have no doubt that it is generally true, but we have not been able to 
prove positivity for all s. 

To make a stochastic selection of j, we need the analytic sum 
r - 1  

( 1 -  
2 sinh2(&,+,/2) C O S ~ ( ~ ~ , , + ~ S )  h-,= c h f l ( y ) =  

.v = -I 5 - 1 1 

1 - - 
2 sin2[(2n + l).rr/4s] ( l  

by (3). The probability p, = 4 Z, F , ( y )  to be associated with each j (assuming we have 
picked one of the four sides at random) is given by (13) with h, replaced by 4h-,. To 
pick j quickly with a good acceptance rate, one needs to have a rapidly invertible 
reasonable estimate of pJ. We have found in practice that the first column has a much 
larger probability than the others and that p, falls off at least as fast as l / j ( j +  1 ) .  
Using this dependence for all j # 0 (this distribution is easily inverted), we find that 
the acceptance rate is quite high, greater than 90%, even for very large s. 
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The choice of j can be made very rapid by the following procedure. A small 
coefficient a is chosen so that a / j (  j + 1) > p, for 0 < j ( s  - 3) /2 .  We have found that 
a = 0.1 is sufficient. A random number r is chosen from 0 to 1. If r > a, we set j = 0. 
If r < a, we use r / a  to select a j > 0 with probability l / j ( j  + 1). We accept this j with 
probability p,j( j +  1)a-I if j < (s - 1)/2, or 0 if j 3 (s - 1)/2. If this trial fails we set 
j = 0 with no further calculation. Since the first choice gives j = 0 for 90% of the time, 
this part of the calculation usually requires no work at all. 

Finally, once a value of j is accepted, it is necessary to select y with distribution 
F , ( y ) / p ,  using an  accept-reject procedure. If one uses the trial distribution given in 
the previous section, one finds that the acceptance probability is sometimes greater 
than 1 .  This is easily cured by rescaling the acceptance probability by a factor such 
as 0.95. We have found numerically that the optimal factor converges to 1 as s -+ CO, 

but the acceptance rate is sufficiently high (>70% for all s )  that it is not worth the 
extra effort to optimise this factor. Generally speaking, the stochastic method allows 
one to use any value of s, and has absolutely no memory requirements. However, it 
does require the frequent calculation of elementary functions but this may be the only 
method available for some problems less regular than DLA. 

4. Conclusion 

In summary, we have presented two algorithms for accelerating on-lattice DLA simula- 
tions without introducing any bias. The first one relies on the tabulation of a Green 
function: it is computationally very fast but has some memory requirements. The 
second does a sampling which relies on a tractable decomposition of the Green function 
into positive pieces: it needs no tables, but requires more evaluations of elementary 
functions. 
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